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Python for Data Science & Machine Learning

KDnuggets Analytics, Data Science, Machine Kaggle ML and Data Science Survey, 2017
Learning Software Poll, top tools share, 2015-2017
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From Prototype to Production
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https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python
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High Performance Python

Python
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High Performance Python

Python Libraries

Intel® Performance Libraries

(generations of processors)

more cores,
more threads,
wider vectors, ...
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Accelerating Machine Learning

» Efficient memory layout
via Numeric Tables

» Blocking for optimal
cache performance

Intel® Data Analytics Acceleration Library

(DAAL) » Computation mapped to
most efficient matrix
Intel® Math Kernel Intel® Threading operations (in MKL)

Library (MKL) Building Blocks (TBB)
» Parallelization via TBB

"~ » Vectorization
Tryitout! conda install -c intel scikit-learn
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Accelerating K-Means

Performance speedups for Intel® Distribution for Python* scikit-learn on Google
Cloud Platform’s 96 vCPU instance Intel® Xeon™ Processors
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System Configuration: GCP VM, zone us-central1-c; 96 vCPU, Intel Skylake; 360 GB memory. Ubuntu 16.04.3 LTS; Linux instance-1 4.10.0-38-generic #42~16.04.1-Ubuntu
SMP Tue Oct 10 16:32:20 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux; Intel® Distribution for Python* from Docker image intelpython/intelpython3_full:latest (created 2017-
09-12T20:10:42.862965559Z); Stock Python*: pip install scikit-learn
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Scaling Machine Learning Beyond a Single Node

Intel® Data Analytics Acceleration Library Powered by DAAL
(DAAL)

Intel® Math Kernel Intel® Threading Scalable to multiple nodes
Library (MKL) Building Blocks (TBB)

Tryitout! conda install -c intel/label/test daaldpy
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Distributed K-Means using Daal4py

import daal4py as d4p

# initialize distributed execution environment
d4p.daalinit()

# load data from csv files into numpy arrays
files = ["kmeans_dense.csv", ..]
dfin = [Toadtxt(x, delimiter=',') for x in files]

# compute initial centroids & kmeans clustering
centroids = d4p.kmeans_init(10, t_method="plusPlusDense", distributed=True)
result = d4p.kmeans(10, distributed=True).compute(dfin, centroids.compute(dfin))

mpirun -n 4 -genv DIST CNC=MPI python ./kmeans.py
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Strong & Weak Scaling of K-Means via Daal4py

daald4py: K-Means Distributed Scalability
16M observations, 300 features, 10 clusters
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Intel(R) Xeon(R) Gold

6148 CPU @

2.40GHz, EIST/Turbo

on

2 sockets, 20 Cores

per socket

16 192 GB RAM

NUMBER OF NODES 16 nodes connected
with Infiniband

Operating Oracle Linux Server

™ (strong) 2 processes per node; fixed total input size ™ (weak) 2 processes per node; input size per node System  release 7.4

Data Type double

S Hardware
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Productivity with Performance via Intel® Python*

Mrumey| G SciPy || 2] Pandas | mpispy | swe| -

Easy, out-of-the-box access to high performance Python
* Prebuilt accelerated solutions for data analytics, numerical computing, etc.
* Drop in replacement for your existing Python. No code changes required.

Learn More: software.intel.com/distribution-for-python
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evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.
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Python at NERSC

Rollin Thomas

NERSC Data and Analytics Services
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Outline NEeF

1. Python enables HPC science at NERSC
Orchestration ® Workflows ¢ Analytics ® HPC Apps

2. How we help Python users at NERSC
Productivity ® Performance

3. Experimental/Observational Science Engagements
Python in NESAP for Data Projects w/Intel
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Science via Python@NERSC
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Python in Edge Services

Data Sharing Across
Facilities|

The Legacy Surveys

The Legacy Surveys are producing an inference model catalog of the sky from
a set of optical and infrared imaging data, comprising 14,000 deg2 of
extragalactic sky visible from the northern hemisphere in three optical bands (
8, 7,2) and four infrared bands. The sky coverage is approximately bounded by
-18° < 8 < +84° in celestial coordinates and |b| > 18° in Galactic coordinates.
To achieve this goal, the Legacy Surveys are conducting 3 imaging projects on
different telescopes, described in more depth at the following links:

The Beijing-Arizona The DECam Legacy | The Mayall z-band
Sky Survey (BASS) Survey (DECalS) | Legacy Survey (MzLS)

U.S. DEPARTMENT OF Office of
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Python in HPC Jobs at NERSC [L.2a

Around 3% of NERSC hours on Cori in the
past year easily detected as Python jobs*:

srun -n .. python whatever.py ..

This is a lower limit, as users:

e Often make main programs executable
e Use Python in containers to scale up

& Office of

eeeeee

* Production batch jobs, not use on shared login nodes. EEEsE



Packages Users Say They Use lii
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Monitored Imports (Cori)
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NERSC’s Python Strategy NEF

Focus on user productivity.
Support familiar, trusted, up-to-date libraries.
Find ways to put performance in user reach.

Examples:
Threaded libraries: Intel MKL
Support cluster scaling: Cray+mpidpy
Close architecture gaps: Containers

Office of
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NERSC Python: Anaconda NEF

Most well-known and widely used distribution.
Designed around analytics, statistics, ML/DL.
“Personalized” environments and package manager.
Easily provide access to Intel Python Distribution.

2016: MKL added, and Intel upstreams optimizations:
NERSC drops its builds of Python on Cray the same

year.
O (inteD

Other options for HPC: ANACONDA

....Source builds, Spack, etc.
ENERGY science




Handling MPI with mpi4py

Cluster parallelism with MPI via mpi4py:
MPI-1/2/3 specification support
OO interface ~ MPI-2 C++ bindings
Point-to-point and collectives
Picklable Python objects & buffers

Build mpidpy & dependents with
Cray MPICH:

python setup.py build --mpicc=cc
python setup.py install

Offce of Cray-provided
s Compiler wrapper

Optical Cable Links
(Rank-3)

2-Cabinet 2-Cabinet /z-Cabinel 2-Cabinet
Group0 Groupl Group 2 Group N

(Rank-2)

assis

] ] | foa] Do) B s fis] |
) | (e ) B (e 5] | (|

PDC & Lo gy Lo
Blade Blade Blade Blade\ s Blade Blade
0 1 2 3 = 1415

Cori Aries Interconnect




Containers NEF
and Python go well together at NERSC

Motivations, esp. for data science: *
Flexibility Convenience
Consistency Reproducibility — docker

Some Options: IFT
Docker Shifter (~Docker on Cray)
Singularity CharlieCloud

@R U5 DEPARTNENT OF | Office of Nice recent blog summary of the state of HPC contlainers: ,\I\\|
\@‘ ENERGY science https://www.stackhpc.com/the-state-of-hpc-containers.html




“Slow Launch” at Scale NEeFR

mpi4py-import Python’s import is metadata intensive,
WK’S‘QOO cori-haswell (large) = catastrophic contention at scale
frovious & months = it matters where you put your env
250 4 4800 MPI ranks
A import astzopy Project (GPFS):
= 2007 For sharing large data files
E 0. Scratch (Lustre):
S OK, but gets purged periodically!
5 100 4 Common (GPFS):
7 - RO w/Cray DVS client-side caching
50 - Open to users now, was only staff
— _ Shifter (Docker Containers):
b!tter 0 —— — : Shz Metadata lookup only on compute
931s 3675  203s  90s Storage on compute is RAM disk

\i‘ ESDNEMERWREEFY Office of [Median launch time incl. MP1_Init()] |dconfig when you build image
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Python on Knights Landing NEF

Things will work, but at least,
e Understand and use numpy array syntax, broadcast
rules, and scalar/“vector” interfaces to functions.

e Use threaded+vectorized libraries and compiled
extensions, minimize time outside of using them.

e There may, in fact, be more than one way to do it;
Prepare to rethink algorithms, memory usage, etc.

e Layer use of profiling tools to identify/assess hotspots.
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NESAP for Data NEE

NERSC Exascale Science Applications Program for Data:

Users whose applications process, analyze, and/or simulate data sets or
data streams from experiments and instrumentation supported by DOE
need help preparing for extreme scale and exascale computing.

Early Close
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.
APEX-SZ |
330 detectors |

960 detectors

POLARBEAR-1
1274 detectors
Dual-Polarization

POLARBEAR-2/SPT-3G
8,000/15,000 detectors
Dual-Polarization
2-3 Color/pixel

DESI TOAS

TomoPy (Python & C):
Tomographic data processing and image reconstruction
PI: Doga Gursoy, Argonne National Laboratory
DESI Pipeline (As Pure Python as Reasonably Possible):
Baryon acoustic oscillations (DESI Project)
PI: Stephen Bailey, Lawrence Berkeley Laboratory
TOAST (Time Ordered Astrophysics Scalable Tools, Python & C++):
R i Cosmic microwave background data analysis and simulation (CMB S4) ,
ENERGY | scionce PI: Julian Borrill, Lawrence Berkeley Laboratory e




DESI [Bailey, Stephey; Pavlyk, Douyeb, Fernandez, Hogan] m

Science Purpose: Spectroscopy for Dark Energy science
e 3D map of the Universe over 10 billion years
e Spectra of 10’s of millions of galaxies and quasars
e Create flux-calibrated 1D tables of flux vs wavelength of
Galaxies, quasars, etc. from 2D CCD image frames

Algorithms and Methods DESI Fiber Positioner Petal
e Scientific Python stack (NumPy, SciPy, etc.; threaded) 1 Exposure = 30 Frames

Linear algebra (esp. Hermitian eigen-decomposition) =,15_’009 ,Tr?ces

Special function evaluations, fitting functions to data

MPI (mpidpy) data-parallel processing + Shifter to scale up

Production Requirements
e Real-time pressure to do real-time survey planning each day

.S. DEPARTMENT OF Office of

ENERGY Science




DESI Optimization & Scaling NEF

Simulation Code (Simulate Spectra on CCDs): 1.5-1.7x on HSW, multi-node scaling w/MPI
e Numba JIT compilation to speed up 2 lines of expensive matrix slicing
e MPI work to scale up the code:

Broadcast/reduce to scatter/gather where best use, complete initial I/O faster

Multi-level Comm scheme to optimally fill nodes

Scale tests up to 60 nodes so far, will be used in production soon

Single exposure (30 frames simultaneously) in 8 minutes

Roughly equal performance between multiprocessing and MPI on single node

o O O O O

Main Extraction Code (1D traces from CCD images)
e Main bottleneck is 1egval in NumPy (scalar/vector args) observed at first Dungeon.
e Precompute legval w/large vector input (not scalar): promising but delicate refactor.
e Also legval itself: 4x speedup with loop unrolling and Numba.
e Using some of the code as a testbed for initial experimenting with PyPy.

Office of
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PyHPC 2018

At SC18!

8th Workshop on Python for
High-Performance and
Scientific Computing

Office of
Science




Conclusion NI€

Python fills numerous critical roles at HPC scientific
computing centers like NERSC.

Especially true in experimental/observational sciences,
data processing/analysis more than analytics for now.

Achieving good Python performance is challenging
and users (not often HPC-oriented) need to partner
with center staff and vendors/developers to get it.

Office of
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